Ячейка Мэйера

Импульсный генератор для ячейки Мэйера


Изучая элементную базу электронных плат, на которых были собраны все устройства входящие в состав сложной установки, применяемой Мэйером в водородном генераторе, установленном им на автомобиль, я собрал "главную часть" устройства – импульсный генератор.

Все электронные платы выполняют в Ячейке определённые задачи.

Электронная часть мобильной установки генератора водорода Мэйера состоит из двух полноценных устройств, оформленных в виде двух независимых блоков. Это блок управления и контроля ячейки, вырабатывающей кислородно-водородную смесь и блок управления и контроля за подачей этой смеси в цилиндры двигателя внутреннего сгорания. Фотография первого представлена ниже.

.
Блок контроля ячейки
Блок управления и контроля ячейки

Блок управления и контроля за работой ячейки состоит из устройства вторичного питания обеспечивающего все платы модуля энергией и одиннадцати модулей – плат, состоящих из генераторов импульсов, схем контроля и управления. В этом же блоке, за платами импульсных генераторов находятся импульсные трансформаторы. Один из одиннадцати комплектов: плата импульсного генератора и импульсного трансформатора используется конкретно только для одной пары трубок Ячейки. А поскольку пар трубок одиннадцать, то и генераторов тоже одиннадцать.

.
Импульсный генератор
Плата импульсного генератора

Судя по фотографиям, импульсный генератор собран на простейшей элементной базе цифровых логических элементов. Принципиальные схемы, публикуемые на различных сайтах, посвящённых Ячейке Мэйера, по принципу работы не так далеки от её оригинала, за исключением одного – они упрощены и работают бесконтрольно. Другими словами, импульсы подаются на трубки-электроды до той поры, пока не наступит "пауза", которую по своему усмотрению оперативно с помощью регулировки устанавливает конструктор схемы. У Мэйера "пауза" формируется только тогда, когда сама Ячейка, состоящая из двух трубок, сообщит что пора бы эту паузу сделать. Имеется регулировка чувствительности схемы контроля, уровень которой устанавливается оперативно с помощью регулировки. Кроме того, имеется оперативная регулировка длительности "паузы" - времени, в течение которого на ячейку не поступают импульсы. В схеме генератора Мэйера предусмотрена автоматическая регулировка "паузы" в зависимости от необходимости количества вырабатываемого газа. Эта регулировка осуществляется по сигналу, поступающему от блок управления и контроля за подачей топливной смеси в цилиндры ДВС. Чем быстрее вращается двигатель внутреннего сгорания, тем больше расход кислородно-водородной смеси и тем короче "пауза" у всех одиннадцати генераторов.

На переднюю панель генератора Мэйера выведены шлицы подстроечных резисторов осуществляющих регулировку частоты импульсов, длительности паузы между пачками импульсов и ручной установки уровня чувствительности схемы контроля.


Для репликации опытного импульсного генератора нет необходимости в автоматическом контроле потребности газа и автоматическом регулировании "паузы". Это упрощает электронную схему импульсного генератора. Кроме того, современная электронная база более развита, чем была 30 лет назад, поэтому при наличии более современных микросхем, нет смысла использовать простейшие логические элементы, которые ранее использовал Мэйер.

В настоящей статье публикуется схема импульсного генератора, собранного мной, воссоздающего принцип работы генератора ячейки Мэйера. Это не первая моя конструкция импульсного генератора, до неё было ещё две более сложных схемы, способных генерировать импульсы различной формы, с амплитудной, частотной и временной модуляцией, схемами контроля тока нагрузки в цепях трансформатора и самой Ячейки, схемами стабилизации амплитуд импульсов и формы выходного напряжения на Ячейке. В результате исключения, по моему мнению "ненужных" функций получилась простейшая схема, очень похожая на схемы, публикуемые на различных сайтах, но отличающаяся от них наличием схемы контроля тока Ячейки.

Как и в других публикуемых схемах, в ячейке имеются два генератора. Первый является генератором – модулятором, формирующим пачки импульсов, а второй генератором импульсов. Особенностью схемы является то, что первый генератор - модулятор работает не в режиме автогенератора, как у других разработчиков схем Ячейки Мейера, а в режиме ждущего генератора. Модулятор работает по следующему принципу: На начальном этапе он разрешает работу генератора, а по достижении непосредственно на пластинах Ячейки определённой амплитуды тока, происходит запрет генерации.

В мобильной установке Мэйера в качестве импульсного трансформатора используется тонкий сердечник, а количество витков всех обмоток огромное. Ни в одном патенте не указаны ни размеры сердечника, ни количество витков. В стационарной установке у Мэйера замкнутый торроид с известными размерами и количеством витков. Именно его и решено было использовать. Но поскольку тратить энергию впустую на намагничивание в однотактной схеме генератора это – расточительство, было решено использовать трансформатор с зазором, взяв за основу ферритовый сердечник от строчного трансформатора ТВС-90 применяемого в транзисторных чёрно-белых телевизорах. Он наиболее подходит под параметры, указанные в патентах Мейера для стационарной установки.

Принципиальная электрическая схема Ячейки Мейера в моём исполнении представлена на рисунке.

.

Никакой сложности в конструкции генератора импульсов нет. Он собран на банальных микросхемах – таймерах LM555. По причине того, что генератор экспериментальный и неизвестно какие токи нагрузки нас могут ожидать, для надёжности в качестве выходного транзистора VT3 используется IRF.

Когда ток Ячейки достигнет определённого порога, при котором происходит разрыв молекул воды, необходимо сделать паузу в подаче импульсов на Ячейку. Для этого служит кремниевый транзистор VT1 - КТ315Б, который запрещает работу генератора. Резистор R13 "Ток срыва генерации" предназначен для установки чувствительности схемы контроля.

Переключатель S1 "Длительность грубо" и резистор R2 "Длительность точно" являются оперативными регулировками длительности паузы между пачками импульсов.

В соответствии с патентами Мейера трансформатор имеет две обмотки: первичная содержит 100 витков (для 13 вольт питания) провода ПЭВ-2 диаметром 0,51 мм, вторичная содержит 600 витков провода ПЭВ-2 диаметром 0,18 мм.

При указанных параметрах трансформатора оптимальная частота следования импульсов – 10 кГц. Катушка индуктивности L1 намотана на картонной оправке диаметром 25 мм, и содержит 100 витков провода ПЭВ-2 диаметром 0,51 мм.


Теперь, когда вы всё это "проглотили", произведём разбор полётов этой схемы. С данной схемой я не применял дополнительных схем повышающих выход газа, потому что в мобильной Ячейке Мэйера их не наблюдается, конечно не считая лазерной стимуляции. Или я забыл сходить со своей Ячейкой к "бабке – шептунье", чтобы она нашептала высокую производительность Ячейки, или не правильно выбрал трансформатор, но КПД установки получился очень низкий, а сам трансформатор сильно нагревался. Учитывая, что сопротивление воды мало, сама Ячейка не способна выступать в качестве накопительного конденсатора. Ячейка просто не работала по тому "сценарию" который описывал Мейер. Поэтому я добавил в схему дополнительный конденсатор С11. Только в этом случае на осциллограмме выходного напряжения появилась форма сигнала, с выраженным процессом накопления. Почему я поставил его не параллельно Ячейке, а через дроссель? Схема контроля тока ячейки должна отслеживать резкое повышение этого тока, а конденсатор будет препятствовать этому своим зарядом. Катушка уменьшает влияние С11 на схему контроля.

Я использовал простую воду из под крана, использовал и свежее дистиллированную. Как я только не извращался, но затраты энергии при фиксированной производительности были в три - четыре раза выше, чем напрямую от аккумулятора через ограничительный резистор. Сопротивление воды в ячейке настолько мало, что повышение импульсного напряжения трансформатором, с лёгкостью гасилось на малом сопротивлении, заставляя магнитопровод трансформатора сильно нагреваться. Возможно, предположить, что вся причина в том, что я использовал трансформатор на феррите, а в мобильной версии Ячейки Мейера стоят трансформаторы, у которых сердечник почти отсутствует. Он больше выполняет функцию каркаса. Не трудно понять, что Мейер компенсировал малую толщину сердечника большим количеством витков, тем самым увеличив индуктивность обмоток. Но сопротивление воды от этого не увеличится, поэтому и напряжение, о котором пишет Мейер, не поднимется до описываемого в патентах значения.

С целью повышения КПД я решил "выкинуть" из схемы трансформатор, на котором происходит потеря энергии. Принципиальная электрическая схема Ячейки Мейера без трансформатора представлена на рисунке.

.

Так как индуктивность катушки L1 очень маленькая, я так же исключил её из схемы. И "о чудо" установка стала выдавать сравнительно высокий КПД. Я провёл эксперименты и пришел к выводу, что на заданный объём газа установка затрачивает ту же самую энергию, что и при электролизе постоянным током, плюс-минус погрешность измерений. То есть я наконец собрал установку, в которой не происходит потерь энергии. Но зачем она нужна, если напрямую от аккумулятора точно такие же затраты энергии?



Завершение

Завершим тему очень маленького сопротивления воды. Сама Ячейка не способна работать в качестве накопительного конденсатора потому, что вода, которая выступает в качестве диэлектрика конденсатора, быть им не может – она проводит ток. Для того, чтобы над ней совершался процесс электролиза – разложения на кислород и водород, она должна быть проводящей. Получается неразрешимое противоречие, которое возможно разрешить только по одному пути: Отказаться от версии "Ячейка-конденсатор". Накопления в Ячейке подобно конденсатору происходить не может, это Миф! Если учитывать площадь обкладок конденсатора образованного поверхностями трубок, то даже при воздушном диэлектрике ёмкость ничтожно мала, а здесь в качестве диэлектрика выступает вода со своим малым активным сопротивлением. Не верите? Возьмите учебник физики и посчитайте ёмкость.

Можно предположить, что накопление происходит на катушке L1, но этого также не может быть по той причине, что её индуктивность также очень мала для частоты порядка 10 кГц. Индуктивность трансформатора на несколько порядков выше. Можно даже задуматься над тем, зачем её с малой индуктивностью вообще "воткнули" в схему.


Послесловие

Кто-то скажет, что всё чудо в бифилярной намотке. В том виде, в каком она представлена в патентах Мэйером, толку от неё не будет. Бифилярная намотка применяется в защитных фильтрах питания, не одного и того же проводника, а противоположных по фазе и предназначена для подавления высоких частот. Она даже имеется во всех без исключения блоках питания компьютеров и ноутбуков. А для одного и того же проводника, бифилярная намотка делается в проволочном резисторе, для подавления индуктивных свойств самого резистора. Бифилярная намотка может использоваться в качестве фильтра, защищающего выходной транзистор, не пропускающего мощные СВЧ-импульсы в схему генератора, подаваемые от источника этих импульсов непосредственно на Ячейку. Кстати и катушка L1 является отличным фильтром для СВЧ. Первая схема импульсного генератора, которая использует повышающий трансформатор – правильная, только чего-то не хватает между транзистором VT3 и самой Ячейкой. Этому я посвящу следующую статью.


                                         
Самое популярное на сайте за декабрь


Самое новое на сайте

Отчёт о деятельности за 2017 год



Сайт создан в 2011 г. © Все права на материалы сайта, принадлежат Meanders.
Копирование материалов сайта и размещение на других интернет-ресурсах запрешено. По всем вопросам пишите мне на E-mail: netolkomilo@ya.ru